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(1) Let G be any group of order p2, p prime. For g ∈ G, let N(g) denotes its normalizer
in G. Then by the class formula for G, we have |G| is |Z(G)| +

∑
N(a),G

|G|
|N(a)| .

Now a ∈ Z(G) if and only if N(a) is same as G. As G has order p2 and for
a < Z(G), |N(a)| < |G|, p||Z(G)|. So Z(G) , {e}. Assume that |Z(G)| is p. Let
g ∈ G, g < Z(G). So N(g) is a subgroup of G strictly containing Z(G) (since
g ∈ N(g) \ Z(G)). Hence |N(g)| > p. But by Lagrange’s Theorem, |N(g)| divides
p2. So g ∈ Z(G), a contradiction. Thus Z(G) must have order p2, and so G is
abelian.

(2) H is the unique normal p-Sylow subgroup of N(H). If x ∈ N(N(H)) then xN(H)x−1 =

N(H) so xHx−1 ⊆ xN(H)x−1 = N(H). As conjugate of a p-Sylow subgroup is
again a p-Sylow subgroup, we have xHx−1 = H, so x ∈ N(H). Thus N(N(H)) ⊆
N(H). But N(H) ⊆ N(N(H)). Hence N(N(H)) = N(H).

(3) We have an isomorphism Z[i] � Z[X]/(X2+1). Via this isomorphism i corresponds
to X̂ (the residue class of X), and therefore the ideal (2+ i) corresponds to (2+ X̂) =
(2 + X, X2 + 1)/(X2 + 1). Now

Z[X]/(X2 + 1)
(2 + X, X2 + 1)/(X2 + 1)

�
Z[X]

(2 + X, X2 + 1)
�

Z[X]/(2 + X)
(2 + X, X2 + 1)/(2 + X)

.

But Z[X]/(2 + X) � Z, by sending X to −2, so
Z[X]/(2 + X)

(2 + X, X2 + 1)/(2 + X)
� Z/((−2)2 + 1) = Z/(5).

Thus Z[i]
(2+i) is the finite field F5.

(4) For any n ∈ N, the ideals of Z/(n) are (d), ideals generated by d, such that d|n. For
ideals (d1), (d2) of Z/(n), (d1) ⊆ (d2) if and only if d2|d1. Now n = 32 = 25. So
the prime ideals are of the form (2i) for 1 ≤ i ≤ 5. but for i ≥ 2, neither 2 or 2i−1

are in (2i), but their product is. So the only prime ideal of Z/(32) is the ideal (2),
which is also maximal. So the nilradical is same as the Jacobson radical, equal to
the ideal (2).

(5) 12 = 22 × 3. So the ideals of Z/(12) are {0}, (2), (3), (4) and (1). For n ∈ N, d|n,
(Z/(n))/(d) � (Z/(d))/(n) � Z/(d). So the respective quotients are isomorphic to
Z/(12), Z/(2), Z/(3), Z/(4) and {0}.

(6) X2 − X + 6 = X2 − X − 6 = (X − 3)(X + 2) in Z/(12). So 3 and 10 are solutions of
the equation modulo 12. The polynomial has two other zeros, namely 6 and 7.

(7) Claim: There is a one-to-one correspondence between {Ideals of R containing I}
and {Ideals of R/I}.

For an ideal J of R containing I, J/I is an ideal of R/I. Conversely, let J̃ be any
ideal of R/I, π : R → R/I the canonical surjection, J be the preimage of J̃ under
π. For r ∈ R, j ∈ J, π(r · j) = π(r) · π( j) ∈ J̃. So r · j ∈ J, showing that J is an ideal
of R. As π(I) ⊂ J̃ in R/I, I ⊂ J. This proves the claim.
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